Effective Fusion of Multi-Modal Remote Sensing Data in a Fully Convolutional Network for Semantic Labeling

نویسندگان

  • Wenkai Zhang
  • Hai Huang
  • Matthias Schmitz
  • Xian Sun
  • Hongqi Wang
  • Helmut Mayer
چکیده

In recent years, Fully Convolutional Networks (FCN) have led to a great improvement of semantic labeling for various applications including multi-modal remote sensing data. Although different fusion strategies have been reported for multi-modal data, there is no in-depth study of the reasons of performance limits. For example, it is unclear, why an early fusion of multi-modal data in FCN does not lead to a satisfying result. In this paper, we investigate the contribution of individual layers inside FCN and propose an effective fusion strategy for the semantic labeling of color or infrared imagery together with elevation (e.g., Digital Surface Models). The sensitivity and contribution of layers concerning classes and multi-modal data are quantified by recall and descent rate of recall in a multi-resolution model. The contribution of different modalities to the pixel-wise prediction is analyzed explaining the reason of the poor performance caused by the plain concatenation of different modalities. Finally, based on the analysis an optimized scheme for the fusion of layers with image and elevation information into a single FCN model is derived. Experiments are performed on the ISPRS Vaihingen 2D Semantic Labeling dataset (infrared and RGB imagery as well as elevation) and the Potsdam dataset (RGB imagery and elevation). Comprehensive evaluations demonstrate the potential of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks

In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are three-fold: a) we present an efficient multi-scale approach to leverage both a large...

متن کامل

Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks

This work investigates the use of deep fully convolutional neural networks (DFCNN) for pixel-wise scene labeling of Earth Observation images. Especially, we train a variant of the SegNet architecture on remote sensing data over an urban area and study different strategies for performing accurate semantic segmentation. Our contributions are the following: 1) we transfer efficiently a DFCNN from ...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network

In current remote sensing literature, the problems of sea-land segmentation and ship detection (including in-dock ships) are investigated separately despite the high correlation between them. This inhibits joint optimization and makes the implementation of the methods highly complicated. In this paper, we propose a novel fully convolutional network to accomplish the two tasks simultaneously, in...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018